Joint application development

Joint Application Development (JAD) is a development methodology system originally used for designing a computer-based system, but can be applied to any development process. It involves continuous interaction with the users and different designers of the system in development. JAD centers around a workshop session that is structured and focused. Participants of these sessions would typically include a facilitator, end users, developers, observers, mediators and experts. JAD allows for a faster development process and minimizes errors at the same time. JAD also improves the quality of the final product by focusing on the up-front portion of the development lifecycle, thus reducing the likelihood of errors that are expensive to correct later on.

The opposite of JAD is RAD (Rapid Application Development)

Dapat diakses dialamat:

http://www.webopedia.com/TERM/J/Joint_Application_Development.html

Joint application development

From Wikipedia, the free encyclopedia

Jump to: navigation, search
"JAD" redirects here. For the file format, see JAD (file format).
Joint Application Development (JAD) is a popular Fact-finding technique that brings users into the development process as active participants.

The JAD process is based on four simple ideas:

1. People who actually do a job have the best understanding of that job.

2. People who are trained in information technology have the best understanding of the possibilities of that technology.

3. Information systems and business processes rarely exist in isolation -- they transcend the confines of any single system or office and affect work in related departments. People working in these related areas have valuable insight on the role of a system within a larger community.

4. The best information systems are designed when all of these groups work together on a project as equal partners.

The JAD process does for computer systems development what Henry Ford did for the manufacture of automobiles (a method of organizing machinery, materials, and labor so that a car could be put together much faster and cheaper than ever before – the assembly line). The goal in systems development is to identify what the users really need and then set up a system or process that will provide it. Traditional methods have several built-in delay factors that get worse as more people become involved.

[edit] Typical session agenda:
Project leader:
1. Introduce all JAD team members

2. Discuss ground rules, goals, and objectives for the JAD sessions

3. Explain methods of documentation and use of CASE tools, if any

Top management (sometimes called the project owner or sponsor): Explain the reason for the project and express top management authorization and support.

Project Leader:
1. Provide overview of the current system and proposed project scope and constraints

2. Present outline of specific topics and issues to be investigated.

Open discussion session, moderated by project leader:
1. Review the main business processes, tasks, user roles, input, and output

2. Identify specific areas of agreement or disagreement

3. Break team into smaller groups to study specific issues and assign group leaders.

JAD team members working in smaller group sessions, supported by IT staff:
1. Discuss and document all system requirements

2. Develop models and prototypes.

Group leaders:
1. Report on results and assigned tasks and topics

2. Present issues that should be addressed by the overall JAD team

Open discussion session, moderated project leader:
1. Review reports from small group sessions

2. Reach consensus on main issues

3. Document all topics

Project leader:
1. Present overall recap of JAD session

2. Prepare report that will be sent to JAD team members

[edit] Advantages and disadvantages
Compared with traditional methods, JAD may seem more expensive and can be cumbersome if the group is too large relative to the size of the project. Many companies find, however, that JAD allows key users to participate effectively in the requirements modeling process. When users participate in the systems development process, they are more likely to feel a sense of ownership in the results, and support for the new system. When properly used, JAD can result in a more accurate statement of system requirements, a better understanding of common goals, and a stronger commitment to the success of the new system.

	JAD

	[image: image1.png]

	[image: image2.png]

[image: image3.png]

	
	

	[image: image4.png]

- JAD (Joint Application Development) is a methodology that involves the client or end user in the design and development of an application, through a succession of collaborative workshops called JAD sessions. Chuck Morris and Tony Crawford, both of IBM, developed JAD in the late 1970s and began teaching the approach through workshops in 1980.

The JAD approach, in comparison with the more traditional practice, is thought to lead to faster development times and greater client satisfaction, because the client is involved throughout the development process. In comparison, in the traditional approach to systems development, the developer investigates the system requirements and develops an application, with client input consisting of a series of interviews.

A variation on JAD, rapid application development (RAD) creates an application more quickly through such strategies as using fewer formal methodologies and reusing software components.

LAST UPDATED:
26 Feb 2003

JAD Documentation dapat sumber didapat dari:
http://www.bee.net/bluebird/jaddoc.htm
	[image: image6.png]

	
Joint Application Design
Business Requirements Analysis for Successful Re-engineering
by Bill Jennerich
	[image: image7.png]\J

	
	Today's business organizations have to cope with shorter product life cycles and demands for higher customer service levels. Firms that take too long to deliver products or provide products of unacceptable quality are doomed to failure.

Corporate Information Services (IS) departments are businesses too. Many of them are in trouble because they are unable to respond quickly to senior executives' needs for applications and information. Companies have automated many manual processes over the years to increase efficiency. However, these systems only support the routine operational needs of the company. Now, companies need applications that cross functional boundaries and provide higher-level management information and decision support to senior executives who need help to respond to new customer demands.

Progressive organizations are looking beyond simply patching up the way they do business. They are re-engineering their business processes to change dramatically the way they operate and the products they provide. Progressive IS departments are also changing by taking advantage of new tools and new techniques to re-engineer the way they build systems.

Development Life Cycle
As a business, the IS department's primary function is to manufacture and support products called information systems for its customers called users. The manufacturing process, planning, analysis, design, development, and maintenance, traditionally has been called the "systems development life cycle."

The classical systems development life cycle specifies the sequence of activities required to take an IS application concept through design and development to successful deployment. This is a sequence of steps and procedures that we all learned about years ago. I imagine that we all feel pretty guilty that we've not followed this life cycle as well as we should have. But we will, on our very next development project, if we have the time.

Unfortunately, pure development projects are few and far between these days. In most of our shops, up to 90% of our time is spent in maintenance of existing applications. We spend more time patching new functionality into old systems than we do designing new systems to replace the old ones.

Missing the Mark
Unfortunately, pure development projects are few and far between these days. In most of our shops, up to 90% of our time is spent in maintenance of existing applications. We spend more time patching new functionality into old systems than we do designing new systems to replace the old ones.

So where has this classical systems development life cycle gotten us? Let's review some industry statistics:

· 60% of large systems projects have significant cost overruns,

· 75% of completed systems are in need of constant maintenance,

· 60% to 80% of errors originate in the user requirements and functional specifications.

A survey conducted by the Index Group of Cambridge Massachusetts in early 1990 concluded that "Systems developers are operating amid turf battles, historical bickering, low credibility and the difficulty in pinning down ever-changing systems requirements." Their survey of 95 systems development directors found that:

· 64% say that they cannot get users in different departments to cooperate in cross-functional systems projects,

· 78% say that coordinating efforts between end user developers and professional systems developers is a major challenge even though the number of end users developing their own systems is on the rise,

· less than 29% say they have any long-range plans for retiring obsolete systems.

These statistics reflect the "state of the art" in software systems development in large organizations today. We might be tempted to say that it's different in small organizations. Yes, it probably is different, but likely no better. The information needs of large organization have hit smaller companies as well. For example:

· We've all got a need to develop strategic systems that support users in multiple functions.

· The need for cross-functional strategic applications makes it more difficult to get users to agree to and sign-off on system specifications.

· At the same time, tools are maturing that can help us develop and implement applications faster than ever before.

In "real life" systems development, time and effort are heavily skewed towards coding. We feel the need to get started writing the code so we can get it done in time to allow us to debug the system before we implement it.

This often results in poor planning feeding inadequate design that does not meet business needs and requires major revisions and difficult maintenance over the life of the system. To complicate matters, we've got application systems that have been in production, in some cases, for over 15 years. Each year those creaky old systems get harder and harder to maintain and modify.

Today's Environment
Computer-Aided Software Engineering (CASE) tools are available today to help us develop applications very quickly. Along with the tools, the industry has evolved new views of the traditional systems development life cycle.

The Information Engineering proponents have re-defined and simplified the life cycle to 4 phases: Planning, Analysis, Design, and Construction. Other methodologies have defined similar phases.

The one thing all of today's development methodologies agree upon is that we need to improve the quality of the input - the user requirements. Requirements must be defined and specified in a consistent, repeatable, and structured way.

Consequently, the heart of the IS business has moved up the life cycle. Today we must focus more on analysis and design and less on the traditional "nuts and bolts", the coding and the implementation tools.

That means to develop effective information systems today we must take the time to integrate the technical aspects of information technology and the social aspects of the organization.

To determine user requirements today, we must adopt more effective techniques that recognize both the differences in communications styles of our colleagues in the company and the differences in application requirements of the business functions that we serve. One such technique is Joint Application Design (JAD).

What is JAD?
Joint Application Design is a management process - a people process - which allows IS to work more effectively with users in a shorter time frame. Since the late seventies, JAD has proven to be an effective technique for building user commitment to the success of application systems through their active participation in the analysis of requirements and the specification of the system design.

The facilitated JAD workshop brings key users (stakeholders) and systems professionals together to resolve their differences in a neutral, non-hostile atmosphere. Key to the workshop is a specially trained, unbiased facilitator who is not a member of the project team and therefore has no political stake in the outcome of the workshop. The workshop will build a team that will stay together, psychologically at least, for the life of the project.

The power of JAD is in the integration of behavioral and group dynamics techniques within the structure of a soundly engineered methodology. What does that mean? It means that a JAD workshop is not just a nice meeting.

The workshop has a highly structured agenda with clear objectives including a mechanism for resolving open issues that often bog down the design process. The deliverables are clearly defined during the pre-workshop activities so that there can be a smooth and successful transition to the next phase in the life cycle - application design or acquisition.

Workshops are effective at all levels: enterprise, business area, application, and implementation project management. Facilitated workshops can be used whenever a group of diverse individuals needs to reach a workable consensus. Today, workshops are commonly used for strategic business planning, strategic IS plans, IS architecture definition, re-engineering business processes, detailed system design, process and data modeling, and project management.

This positive, team-building environment gives people a chance to learn from each other and to understand each other's needs and concerns. The participants will develop a common view of the project and a common language to discuss the project issues.

A Common Language
We need a common language so that we can understand each other's concerns - not the broad issues that are obvious to everyone, but the subtleties that give individual business functions that extra edge.

Users know what they want but they don't have a way to articulate the subtleties of their business needs so that IS can understand them and build working systems to support them effectively.

Different functional units have different ways of operating, of making decisions, and of analyzing what's going on around them. Finance and accounting people, for instance, tend to be very "cut and dried" or mechanistic in the way they analyze a problem and judge the merits of a proposed solution. For an accountant, 2 plus 2 is always 4. A lot of systems people think like accountants. We like to work towards that one right answer.

Marketing people, on the other hand, are more willing to work with abstractions and uncertainties. Consequently, they can be more frustrating for IS to deal with. They tend to see many shades of gray. What's 2 plus 2 in the marketing department? "Well, it depends, are we buying or are we selling."

Today we need applications that cross functional boundaries and provide high-level management information and decision support to all of our top executives, to help them respond to the changing business environment.

However, as we move up the corporate ladder, there is a greater tendency towards a more open, organic, and adaptive view. That means that there may not be one right answer. Instead, we may need to choose among a group of not wrong answers to find the one that best fits the organizations culture, business, and marketplace. That means it's harder to get upper management to express their needs in terms that systems people can understand.

The common language developed in the facilitated JAD workshop helps all the participants com- municate and understand each other's needs so that IS can build systems that more effectively support the company's higher-level information needs.

Pre-Workshop Activities
Good preparation is key to success. There is between one and three weeks of work required to prepare for a workshop. That preparation is required to:

1) Identify project objectives and limitations
It is vital to have clear objectives for the workshop and for the project as a whole. The pre-workshop activities, the planning and scoping, set the expectations of the workshop sponsors and participants.
Scoping identifies the business functions that are within the scope of the project. It also tries to assess both the project design and implementation complexity.
The political sensitivity of the project should be assessed. Has this been tried in the past? How many false starts were there? How many implementation failures were there?
Sizing is important. For best results, systems projects should be sized so that a complete design - right down to screens and menus - can be designed in 8 to 10 workshop days.

2) Identify critical success factors.
It is important to identify the critical success factors for both the development project and the business function being studied. How will we know that the planned changes have been effective? How will success be measured? Planning for outcomes assessment helps us judge the effectiveness and the quality of the implemented system over its entire operational life.

3) Define project deliverables
In general, the deliverables from a workshop are documentation and a design. It is important to define the form and level of detail of the workshop documentation. What types of diagrams will be provided? What type or form of narrative will be supplied?
It is a good idea to start using a CASE tool for diagraming support right from the start. Most of the available tools have good to great diagraming capabilities but their narrative support is generally weak. The narrative is best produced with your standard word processing software.

4) Define the schedule of workshop activities
Workshops vary in length from one to five days. The initial workshop for a project should not be less than three days. It takes the participants most of the first day to get comfortable with their roles, with each other, and with the environment. The second day is spent learning to understand each other and developing a common language with which to communicate issues and concerns. By the third day, everyone is working together on the problem and real productivity is achieved.
After the initial workshop, the team-building has been done. Shorter workshops can be scheduled for subsequent phases of the project, for instance, to verify a prototype. However, it will take the participants from one to three hours to re-establish the team psychology of the initial workshop.

5) Select the participants
These are the business users, the IS professionals, and the outside experts that will be needed for a successful workshop.

6) Prepare the workshop material
Before the workshop, the project manager and the facilitator perform an analysis and build a preliminary design or straw man to focus the workshop. The workshop material consists of documentation, worksheets, diagrams, and even props that will help the participants understand the business function under investigation.

7) Organize workshop activities and exercises.
The facilitator must design workshop exercises and activities to provide interim deliverables that build towards the final output of the workshop. The pre-workshop activities help design those workshop exercises. For example, for a Business Area Analysis, what's in it? A decomposition diagram? A high-level entity-relationship diagram? A normalized data model? A state transition diagram? A dependency diagram? All of the above? None of the above? It is important to define the level of technical diagraming that is appropriate to the environment. The most important thing about a diagram is that it must be understood by the users.
Once the diagram choice is made, the facilitator designs exercises into the workshop agenda to get the group to develop those diagrams.
A workshop combines exercises that are serially oriented to build on one another, and parallel exercises, with each sub-team working on a piece of the problem or working on the same thing for a different functional area.
High-intensity exercises led by the facilitator energize the group and direct it towards a specific goal. Low-intensity exercises allow for detailed discussions before decisions. The discussions can involve the total group or teams can work out the issues and present a limited number of suggestions for the whole group to consider.
To integrate the participants, the facilitator can match people with similar expertise from different departments. To help participants learn from each other, he can mix the expertise. It's up to the facilitator to mix and match the sub-team members to accomplish the organizational, cultural, and political objectives of the workshop.
A workshop operates on both the technical level and the political level. It is the facilitator's job to build consensus and communications, to force issues out early in the process. There is no need to worry about the technical implementation of a system if the underlying business issues cannot be resolved.

8) Prepare, inform, educate the workshop participants
All of the participants in the workshop must be made aware of the objectives and limitations of the project and the expected deliverables of the workshop.
Briefing of participants should take place 1 to 5 days before the workshop. This briefing may be teleconferenced if participants are widely dispersed.
The briefing document might be called the Familiarization Guide, Briefing Guide, Project Scope Definition, or the Management Definition Guide - or anything else that seems appropriate. It is a document of eight to twelve pages, and it provides a clear definition of the scope of the project for the participants.
The briefing itself lasts two to four hours. It provides the psychological preparation everyone needs to move forward into the workshop.

9) Coordinate workshop logistics
Workshops should be held off-site to avoid interruptions. Projectors, screens, PCS, tables, markers, masking tape, Post-It notes, and lots of other props should be prepared.
What specific facilities and props are needed is up to the facilitator. They can vary from simple flip charts to electronic white boards. In any case, the layout of the room must promote the communication and interaction of the participants.

The Key Players
1) The Facilitator
The facilitator is in charge of the workshop - the guardian of the process. It is the facilitator's responsibility to ensure that the expected workshop deliverables are produced and the expected consensus is achieved. The facilitator is an unbiased leader who has no ties to the project. He can come from some other department or from outside the company. Some companies are training facilitators who work out of a facilitation center attached to the human resources department.
The ideal facilitator is an individual who is excited by working with people. That would include only between 10% and 15% of senior systems analysts. Good facilitators often come from non-computer science fields such as teaching or sales. In addition to an aptitude for working with people, the facilitator must have the skills required to achieve the level of analysis detail expected from the workshop. That means training in the following areas: the methodology (such as Information Engineering) that will be used in development, group dynamics, basic selling skills, issue recognition, and listening skills.
Good facilitators listen, recognize issues as they arise, and provide the leadership and direction to help people come together.
The facilitator is responsible for ensuring that each person is heard and has an equal opportunity to influence the decision. The facilitator is also responsible for ensuring that the participants in the workshop construct a solution that everyone can live with.

2) Documentation Expert
This individual has to document the decisions and the issues in the workshop - to act as a scribe.

3) The Executive Sponsor
This is the executive who charters the project - the system owner. The sponsor must be high enough in the organization to be able to clear the calenders of the people required in the workshop. The sponsor provides motivation for commitment through a short speech at the opening of the workshop and has to be available for strategic direction and scoping information during the pre-workshop phase. During the workshop, the executive sponsor must be available for policy decisions appropriate for his level of authority.
Without the executive sponsor's commitment, people do not show up for workshops on time or sometimes at all. Schedules change and projects are delayed. In short, without an executive sponsor, there is no project!

4) The Project Manager
This is the person responsible for the project who will work closely with the facilitator. The project manager, as the client of the workshop process, receives the deliverables.

5) Business Users
These are the intended users of the system being designed. They are in the workshop because of their business expertise. Business users fall into 2 categories: real end users - the people who are actually going the have to use the screens and reports to do their jobs; and representative end users - the people who think they know what's going on in the field. They are responsible for standards and methodology for the business functions they represent.
It is important to get both types of users into the workshop. If the workshop consists of only representative users, then we get good theoretical model - how things should be - but the theories may not work in practice. If we have only real end users, then we get a good system for today but it might not work next year or two years down the road.

6) Systems Experts
The workshop is trying to establish rapport and communications among stakeholders - including IS. Systems people need to be there to know the constraints so they can advise the business people regarding hardware and software under discussion. A good rule of thumb is one systems person for every four users.

7) Outside Experts
Outside experts are business consultants or technology consultants who can provide the expertise that may not be available in-house. For example, the workshop may need support from outside consultants for manufacturing, distribution, marketing, prototyping, organizational dynamics, and change management.

8) Observers
Observers are not allowed to participate in the workshop in any way. They may observe to gain some insight into the business area under investigation or to become familiar with the workshop process.

Post-Workshop Activities
After the workshop, it is important to address and resolve the open issues generated by the workshop. A three-day workshop typically generates about 20 open issues, most of which are business issues. It is critical to get these issues out on the table for discussion and resolution before any code gets written.

The facilitator and the documentation expert work together to finalize the workshop documentation. The project manager is the client who receives the deliverables.

The documentation moves forward through the organization to continue to enroll support and approvals for the development project if necessary.

The design moves forward either for inclusion in a request for proposal for application software acquisition or towards a prototype or a code generation phase. It may contain details such as screen layouts and menus. The data model will contain volumes and capacities. The process model will specify transaction volumes.

If the design is taken into a prototype, there should be a series of 1/2-day or one-day workshops to evaluate and validate the prototype.

Workshop Benefits
1) Builds consensus and ownership The workshop approach will quickly achieve consensus and commitment among users - the customers of the IS function.

2) Improves design quality
The workshop improves the quality of the deliverable of the design phase because it forces a definition of that deliverable in advance. During the workshop the participants are all focused on a common goal. Users in the workshop will have a better understanding of the business issues, the systems issues, and the volume of work to be done.

3) Project teams get focused and stay focused
In the workshop, the participants will build a common view of the project and a common language to discuss the issues. These elements will stay with the team for the life of the project.

4) A natural partnership with modern development tools JAD helps realize the full potential of today's powerful development tools by providing high-quality input requirements quickly.

5) 20% reduction in overall life cycle costs
In 1989, computer industry productivity expert, Capers Jones, studied 60 development projects and found:

· Without JAD, 35% of the functionality was missed and that had an impact on at least 50% of the code - core functionality was missed.

· With JAD, less than 10% of the functionality was missed and that had a minimal impact on the code - indicating that the core functionality was good but refinement was going on. JAD doesn't stop refinement - it helps manage it better. Those projects that used JAD combined with prototyping, did even better!

Conclusion
The information needs of our top executives are not well defined. The business climate is uncertain and changing. There is no single right answer, there is no single right system.

Progressive systems departments are taking advantage of new tools and new techniques to re-engineer the way they build systems. There are new development tools, new methodologies and supporting techniques such as Joint Application Design for developing the requirements specifications for the systems our users need.

To develop effective information systems today we must take the time to integrate the technical aspects of information technology and the social aspects of the organization. That's what facilitated workshop requirements analysis is all about!

Recommended Reading
1. Programming Productivity
by Capers Jones; McGraw Hill.
2. Systems Analysis and Design
by James C. Wetherbe; West Publishing, 1988.
3. Exploring Requirements: Quality Before Design
by Donald C. Gause and Gerald M. Weinberg; Dorset House Publishing, 1989.
4. The Fifth Discipline: The Art & Practice of The Learning Organization
by Peter M. Senge; Doubleday/Currency, 1990
5. Information Engineering:
Book 1: Introduction
Book 2: Planning & Analysis
Book 3: Design & Construction
by James Martin; Prentice Hall, 1990.
6. Up and Running: Integrating Information Technology and the Organization
by Richard E. Walton; Harvard Business School, 1989.

Adapted by the author from his article in UNISPHERE, Nov 1990
P.O. Box 740908, Dallas, TX 75374-0908
(214) 669-9000
Reprinted with permission. All rights reserved.
Free subscription information available upon request.

	
	We appreciate your comments and observations. If you have questions or would like more information, please contact the author at:

	[image: image9.png]43

	Bluebird Enterprises Inc.
357 Beechwood Road
Berwyn, PA 19312-1063
Telephone: 610-647-8662 Fax: 610-647-7796
	

Metodologi Pengembangan

Joint Application Development

Sumber dapat lihat di : http://www.credata.com/research/jad.html

Joint Application Development, or JAD, is a process originally developed for designing a computer-based system. It brings together business area people (users) and IT (Information Technology) professionals in a highly focused workshop. The advantages of JAD include a dramatic shortening of the time it takes to complete a project. It also improves the quality of the final product by focusing on the up-front portion of the development lifecycle, thus reducing the likelihood of errors that are expensive to correct later on.

The JAD process does for computer systems development what Henry Ford did for the manufacture of automobiles (a method of organizing machinery, materials, and labor so that a car could be put together much faster and cheaper than ever before – the assembly line). The goal in systems development is to identify what the users really need and then set up a system or process that will provide it. Traditional methods have several built-in delay factors that get worse as more people become involved.

The following description of the Traditional Systems Design process is from "Joint Application Development" by Jane Wood and Denise Silver ¹. It may sound familiar.

In most organizations, the systems development life cycle begins with the identification of a need, assignment of a project leader and team, and often the selection of a catchy acronym for the project. The leader pursues a series of separate meetings with the people who will use the system or be affected by it.

The leader continues these meetings over time. Often the key people involved are not so easy to reach. But eventually, having documented everything possible, the leader translates copious notes into a personal terminology. That’s when it becomes apparent that the requirements from, say Accounting, don’t mesh with what the Sales department wants. So the leader calls Sales and finds out the contact there is in the field and will not be back until tomorrow. Next day the leader reaches Sales, gets the information, calls Accounting, and of course the person in Accounting is now out of the office, and so on.

When everyone is finally in agreement, alas, the leader discovers that even more people should have been consulted because their needs require something entirely different. In the end, everyone is reluctant to "sign off" on the specifications.

Other times, signing off comes easily. But when the system is delivered, it often has little to do with what the users really need:

"A user sign off is a powerless piece of paper"² when matched against the fury of top management.

Slow communication and long feedback time is one reason the traditional process is so time-consuming. You can see why the communication problem grows worse as more people must be brought into consensus.

JAD centers around a structured workshop session. Everyone gets together in a room and talks it out. Everyone hears what the rest of the group has to say. There’s no delay between question and answer, no "telephone tag" or waiting for memos to come back. JAD eliminates many of the problems with traditional meetings. Meetings are not well regarded as a productive form of work. JAD turns meetings into workshops. They are less frequent, more structured, and more productive. An agenda provides the structure, a facilitator directs the process, visual aids clarify concepts being discussed and the group dynamics, with constant feedback, stimulates creativity.

JAD sessions are:

1. Very focused

2. Conducted in a dedicated environment

3. Quickly drive major requirements and interface "look & feel"

4. JAD participants typically include:

· Facilitator – facilitates discussions, enforces rules

· End users – 3 to 5, attend all sessions

· Developers – 2 or 3, question for clarity

· Tie Breaker – Senior manager. Breaks end user ties, usually doesn’t attend

· Observers – 2 or 3, do not speak

· Subject Matter Experts – limited number for understanding business & technology

¹ Wood, J. and D. Silver, Joint Application Development, 2nd ed., New York : Wiley, 1995.
² Wetherbe, James C., "Executive Information Requirements: Getting It Right", MIS Quarterly, March 1991, p. 51.

RESUME

Joint Application Development (JAD)
Adalah suatu teknik pegembangan Aplikasi yang melibatkan antara pemakai dan profesional dalam pengembangan sistemnya, Teknik JAD dapat diterapkan disetiap tahap pengembangan sistem

JAD merupakan sebuah teknik yang berfokus pada keterlibatan dan komitmen pengguna dalam menentukan kebutuhan dan merancang (desain) aplikasi. JAD biasanya dilakukan dalam bentuk tim yang merupakan gabungan dari seluruh stakeholder proyek, yang bekerja dalam bentuk workshop-workshop atau forum diskusi. Kenapa workshop ? karena teknik JAD ini bukanlah sekedar rapat-rapat, yang biasa dilakukan dalam sebuah proyek dan melibatkan seluruh stakeholder proyek. JAD adalah tim yang nantinya akan membuat rancangan dan mengawasi, memonitor bersama jalannya proyek.

JAD adalah suatu metodologi pengembangan sistem yang mula-mula digunakan untuk merancang suatu sistie yang berbasis-komputer, tetapi dapat diberlakukan bagi setiap proses pengembangan yang melibatkan interaksi berkelanjutan dengan para pemakai dan para perancang yang berbeda sistim di dalam pengembangan. JAD memjadikan suatu pengembangan yang lebih cepat memproses dan memperkecil error pada waktu yang sama. JAD juga memperbaiki mutu produk akhir dengan mengutamakan bagian user/pemakai dalam bagian pengembangan lifecycle, selain itu dengan JAD akan mengurangi kemungkinan dari error yang fatal, dapat membuat suatu sistem menjadi mahal jika terjadi perubahan dikemudian hari.

Proses JAD didasarkan pada empat gagasan yang sederhana:

1. Menempatkan Orang-orang yang benar-benar ahli dalam pekerjaanya.

2. Orang-orang yang terlatih di dalam teknologi informasi mempunyai pemahaman terbaik dalam pengembangan ini.

3. proses-proses Sistem Informasi dan bisnis, Orang-orang yang bekerja di dalam bidang-bidang yang terkait mempunyai pengertian yang mendalam dan perang yang berharga dari suatu sistim dan di dalam suatu masyarakat yang lebih besar.

4. Sistem informasi terbaik dirancang ketika semua kelompok bekerja bersama-sama di suatu proyek sebagai mitra yang sama.
Siapa saja yang perlu terlibat ?
Secara garis besar yang perlu terlibat adalah :

1. Sponsor. Sponsor ini berarti project owner, memiliki kedudukan yang cukup tinggi dalam organisasi dan sebagai pengambil keputusan tertinggi dalam pengelolaan sistem informasi. Satu hal yang penting dilakukan oleh seorang project owner adalah komitmen yang kuat akan implementasi SI yang dilakukan. Without the executive sponsor’s commitment, people do not show up for workshops on time or sometimes at all. Schedules change and projects are delayed. In short, without an executive sponsor, there is no project!

2. Business Users. Business User ini terdiri dari 2 jenis, yaitu real end user dan representative end user. Real end user adalah person yang melakukan pekerjaan real di lapangan. Dalam kasus, ini adalah operator-operator. Sedangkan representative end user adalah person yang mengetahui seharusnya bisnis proses itu dilakukan, memahami spirit dan goal dari sistem yang dikelolanya. Biasanya ini adalah kepala bagian, manajer, atau operator senior.

3. System Analyst (Tim Developer). Person/tim ini yang akan in-charge dari sisi teknologi dan proses engineeringnya.

4. System Experts. Tidak semua referensi mencantumkan peran ini. Perannya lebih seperti konsultan yang memahami seluk beluk bisnis proses dari sisi konseptual dan berbasis pengalaman.

5. Facilitator. Seorang fasilitator berfungsi sebagai moderator dan mengarahkan setiap aktivitas JAD yang melibatkan banyak pihak, untuk menjadi efektif. Seorang fasilitator harus memiliki kecakapan yang baik dalam berkomunikasi, memberikan stimulus-stimulus dan trik-trik agar diskusi bisa berjalan dengan baik.

Tentu saja, setelah penyusunan tim JAD, diperlukan strategi yang tepat dalam melakukan workshop-workshop, sehingga proses dilakukan lebih efektif. Yang jelas, teknik ini sudah terbuktif efektif dalam menyelesaikan masalah-masalah implementasi SI. Satu paragraf terakhir dari salah satu referensi adalah sebagai berikut :

To develop effective information systems today we must take the time to integrate the technical aspects of information technology and the social aspects of the organization. That’s what facilitated workshop requirements analysis is all about!

Referensi :
1. Development Methodology - Joint Application Development (JAD)
2. Joint Application Development
3. Joint Application Design - Business Requirements Analysis for Successful Re-engineering
4. Joint Application Development (JAD) - What do you really want?
Semua Materi ini dapat di Download di

http://sms.unikom.ac.id/taryana/
PAGE
20

